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finite but small gaps. Since the coupling between 
first-order modes becomes important near the cross- 
ing, the normal modes in this region have elliptical 
polarization varying with the angle of incidence, and 
a more careful analysis is needed to obtain accurate 
fields and intensities. In particular, the polarization 
composition of reflected intensities from unpolarized 
sources becomes very complex around x = - 1 ,  and 
simple conceptual interpretations of three-beam 
effects using plane polarized modes and based on 
unpolarized incident radiation become inadequate. 

As the details of  the various crossings, such as in 
Fig. 6, depend intricately on the parameters of every 
specific three-beam case, it is unlikely that next-order 
perturbation solutions can be cast in the same uni- 
versal form as the solutions discussed here. 

In any case, since higher-order effects become 
important only in the region Ixl 1, they in no way 
obscure the major asymmetries at the heart of the 
first-order solutions that should be observable under 
good experimental conditions at much larger x. 

This work was partly supported by Joint Services 
Electronics Program Contract No. F49620-82-C-0084. 
We also thank the referee for calling our attention to 
the paper by Watanabe et al. 
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Abstract 

The asymptotic distribution of ah is calculated via 
the distribution of the resultant of complex random 
vectors whose phase values are distributed according 
to Von Mises distributions. The statistical results 
suggest that the phase of the resultant, say Oh, is 

0108-7673/84/040389-'06501.50 

distributed around the phase ~Oh, approximately 
according to a Von Mises distribution. 

Introduction 

When several pairs of  phases ~0k., ~0h-kj are known, 
the conditional probability distrigution of the phase 

© 1984 International Union of Crystallography 



390 THE DISTRIBUTION OF ah 

~0h given the set {~0kj, ~ h - k j ,  Gj} is a Von Mises distri- 
bution (Karle & Hauptman,  1956): 

P(~hl{~kj, q~h-kj, Gj}) 
--[2rrlo(ah)]-'  exp [ah COS (¢h-- 0h)], (1) 

where Gj = 21EhEkfih-kJ/N~/L 0h is the most efficient 
value for ~h and is given by (Karle & Karle, 1966) 

In spite of the very important role of ah no attempt 
has been made so far at obtaining the distribution 
function of ah. The only known characteristic of this 
distribution used in practice is a~ ,  while equally 
useful would be information about the variance of a. 
This paper is devoted to the calculation of the proba- 
bility distribution of a. 

E IEkfih-k,I sin ( ~ k j  "l- (~0h_k/) 
j Th 

tan Oh =E IEkjEh-k~l c o s  ( ~ 0 k / +  ~0h_k/) - -  Bn' 
(2) 

where 

ah  = 2N-' /2IEhI(T 2 + B2) '/2. (3) 

Equation (1) will be represented by the symbol 
M[q~h; 0u, ah], where the variable is in the first posi- 
tion, its expected value in the second and the con- 
centration parameter ah in the third. 

The parameter a plays a central role in the phasing 
procedures since the discovery (Karle & Karle, 1966) 
that the variance of a phase angle determined via (2) 
may be expressed as a function of a. To give some 
examples we notice: 

(a) the expected value of a 2, that is 

a ~ = E G2,k, + E Oh,k, Oh,k,D,(Gh,k,)D,(Oh,k), 
j i;aj 

(4 )  

where Di(x) = L(x)/Io(x) and Ii is the modified Bessel 
function of order i, is used in the convergence pro- 
cedure (Germain, Main & Woolfson, 1970) for choos- 
ing the starting reflexions; 

(b) in the weighted tangent formulas (Germain, 
Main & Woolfson, 1971) such as 

E Wk, Wh-k, lEk, Eh-kJsin(tpkj+~Ph-k) T~, 
J 

tan ~Oh=~ Wk, Wh-k, lEkjEh-kJ COS (q~kj + q~h-k) = B----£h' 
J 

(5) 

the correct weight to use should be inversely propor- 
tional to the variance and, to a good approximation, 
this is proportional to ah: 

Wh = rain (0"2~h, 1.0). (6) 

In the weighted tangent formula suggested by Hull 
& Irwin (1978) a weight is suggested which assumes 
its maximum (=1) when a 2= az~; thus supporting a 
more realistic agreement between the calculated and 
the expected value of ah; 

(C) several figures of merit, based on the a values 
[i.e. the residual R proposed by Karle & Karle (1966); 
the M criterion proposed by Germain, Main & 
Woolfson (1971) ; . . . )  are widely used to predict which 
solutions are worth examining in the multisolution 
approaches. 

2. The distribution of ah  in non-centrosymmetric space 
groups 

A general technique for deriving the distribution of 
CE h involves the use of the characteristic function. 
Suppose that Oj = 0kj + 0h-kj, j = I , . . . ,  r, are a ran- 
dom sample and they are independently distributed 
with probability density function f~(Oj), j = I, . . . ,  r. 
For fixed Gj values, j = I, . . . ,  r, let us denote 

A= L GjcosOj, B =  L Gjsin q~j, 
j = l  j = l  

ah = (A 2 +B2) !/2, cos Oh = A/ah, sin Oh = B/ah. 
(7) 

The Fourier transform of (8) via (10) gives 
-1-oo 2~- 

P(ah, Oh)" 1/(27r)2ah ~ ~ p exp{--iahp COS(@--0h)} 
0 0 

x h C~(p, 0) dp d0. (1 l) 
j = l  

Integrating over Oh in (l 1) gives 
+oo 2rr 

P(o.,)= j [ pSo(pc, O (I G(p, ,/,)dp a,/,. 
0 0 j = !  

(12) 

where Jo is the Bessel function of order zero. 
Relation (12) is basic for our subsequent applica- 

tions. We will study (12) under two different assump- 
tions: 

(1) the variables Oj are uniformly and independently 
distributed in the interval (0,2~r). This case will 
clearly reveal the connexions of the present problem 
with the classical problem of isotropic random walk 
(Pearson, 1905); 

(lO) 

The joint characteristic function of (A, B) is 

C(u, v)=(exp  i(uA + vB))= h C.i(u, v), (8) 
j = !  

where Cj(u, v) is the joint characteristic function of 
(Gj cos Oj, G~ sin 0j). 

From the change of variables 

u = p cos ~, v = p sin ~, (9) 

the following useful expression for Cj arises: 
2~- 

C~(p, @)= ~ exp{ipGj cos (Oj- @)}~(Oj) dOj. 
0 
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(2) the variables 0j are distributed around ~Ou 
according to the Von Mises distributions 
M[Oj; q~h, 6j]. When every Gj goes to zero this case 
reduces to case 1). 

3.1. Let the random variables q~j be isotropically 
and independently distributed on the circle. Then 
fj(~oj)= 1/2~, and Cj(p, ~)=  Jo(pG)). Therefore 
(Kluyver, 1905): 

+oo 
P( h) = f OJ0(P h) (I Yo(Prj) do. (13) 

o j=l 
It is difficult to evaluate (13) for r > 2. It is possible 

to obtain a simple expression when r is sufficiently 
large by using the asymptotic expression 

fi j o ( p r j ) = e x p ( - 4 ~ 2 )  , (14) 
j=l 

where Ei =E~=l 6j ,  from which (Rayleigh, 1905) 

2ah 

The density (15) represents Wilson's distribution 
(Wilson, 1942) if Gj is the atomic scattering of the 
j th atom and al, = I FI. 

3.2. Let every Oj be distributed around ~0h according 
to M[Oj; ~Oh, Gj]. The distribution function fj(0j)= 
M[O); ~Oh, G)] may be introduced in (10) giving rise to 

+eo 2~" 

P(olh)--O~hIIpJo(pOlh) 
2 ~r (] Io( 6)) o o 

j=l 

x f i  Jo{ G)[P 2 -  1 j--I 
- 2ip cos (~Oh-- q j ) ] ~ / 2 }  dp d~. (16) 

Since it is difficult to evaluate (16) for finite values 
of r, we try to obtain a compact expression when r 
is sufficiently large by using again the approximation 
(14). Then we have 

fi Jo{ rj[p 2-  1 -  2ip COS (~Oh-- !~)] 1/2} 
j=l 

-~exp --~- Y.2 +~p ~2 cos (~Oh -- 0) • 

Integrating with respect to 0 in (16) and introducing 
(14) gives 

2~h P(~h) = --~-2/o(O~h) exp { ~2 t~2 ~2). (17) 

The expected value of a 2 according to (17) is 

and the variance of ah is given by 

(0t2) -- (cth)2 = ~2 { ( 1 -t--~) 

--4 exp (--~'~)[ 1F, (~; 1 ; -'~) ] 2}, 
(18) 

where ~F~ is the confluent hypergeometric function. 
In order to obtain (17) from (16) we used the same 

approximations introduced for the derivation of (15) 
from (13). While (15) is satisfactory when applied as 
a Wilson's distribution, (17) is not very useful for our 
purposes. 

As an example, let us suppose that seven 6j values 
concur to fix a given Oh: 

G~ = 2.81; G2 = 1.86; G3 = 1.73; G4 = 1.67; 

G5 = 1.63; G6 = 1.48; G7--" 1.33. 

The value of (a~,) according to (17) is about 160, 
while it is 80 according to (4). Thus (17) appears too 
rough for practical purposes and we prefer to intro- 
duce a new point of view. 

4. The asymptotic distribution of  R h and ~h 

The estimation of a statistical parameter from large 
samples may be obtained by calculating the value of 
the parameter in the sub-population composed by the 
sample. It is well known that for samples of size r a 
valid measure of precision is provided by the standard 
error provided that: 

(a) the sampling distribution of the statistic under 
discussion approaches normality; 

(b) r is large enough. 
In this sense, 

1 ~ GjcosOj, C = ~  l j= 
1 ~ Gj sin O) (19) 

j= 

are statistical parameters for the population of the 0) 
variables: in particular they may be considered weigh- 
ted averages of independent random variables. 

In accordance with the central limit theorem, for 
r sufficiently large, C and S will be distributed 
according to normal distributions. Let us assume that 
any 0~ is distributed according to M[O); q~h, G)]: then 

1 r 
( C ) = ~  )~= I GjD,(Gj) cos q~h, 

1 " 
(S) = ~ - - ~  6)D,(6j)sin ~0h, (20a) 

LIj=I 

1 c E1 + 02(6)) cos 

- 2D2(6)) cos 2 q~h], (20b) 
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l p 
o.2= var S =  ~ ~ O2[1 - Dm(Gj) cos 2~0h 

-- 2Dm(Gj) sin 2 ~0h]. (20C) 

Further information about C and S is provided by 
application of the bidimensional central limit 
theorem. According to this theorem the joint proba- 
bility distribution of C and S is asymptotically nor- 
mal, and is completely defined if, besides the para- 
meters (C), (S), var C, var S, coy (C, S) is also calcu- 
lated: 

1 " 
cov (C, S )=  ~ 2  ~=~ GY[ Dm(Gj)- Dm(Gj)] sin 2~Oh. 

In conclusion: 

1 

P(C, S) ~- 27ro. o.zx/-~ _ p2 

{ [(c-<c>) 
xexp 2(1 - p Z) L 0.2 

- 2  (C - ( C ) ) ( S - ( S ) )  + (S - (5s))Z ] "~, 
O" 10" 2 0" 2 d J 

where p = coy (C, S)/(o.~o.2) is the correlation 
coefficient of C and S. 

More useful for our purposes are the distributions 
of 

Rn = ( C  2 '~ $ 2 )  1/2, O h = arctan (S/C).  (21) 

Since Rh and 04 are differentiable functions of C 
and S, which in their turn have variances of order 
1/r, the following well-known lemma may be used 
(Kendall & Stuart, 1977). 

Lemma: Suppose that x~ has mean ~:i and that the 
variances and covariances of the m variates x,, Xm, 
. . . ,  x,,, are of order r -t. Consider the function g(x) = 
g(x~, x2, . . . ,x , , ) :  if g~(~)=g~(sr~, srm,..., ~:m) is 
6g(x)/6X~ evaluated at x = ~, g~(~)= g~)(¢~, Cz, • • •, era) 
is 62g(x)/(rx~ 8xj) evaluated at x = ~, then 

(g) = g(l~) +1_ 2 g~'(~) var x, 
2 i=l 

+ ~ g~;(~) cov (x,, xj)] (22) 
i # j =  1 

and 
m 

var g = Y~ [g;(~)]2 var x, 
i=1 

+ ~ g~(~)g;(~) cov (x,, x,), (23) 
iC j= i  

provided not all the g'i(~)= 0. 
The above lemma may be applied to our problem 

by assuming x as a random vector with two com- 

ponents x~ = C, x 2 = S,  while Rh and 0h take in turn 
the role of g. After some calculation we obtain (see 
Appendix):* 

1 rG~[1  1 D 0"2=var Rn'--~mj__~l - ~  , (Gj)-Dm(Gj)]  

(25) 

(04) - arctan (S)/(C) = ~0h (26) 

[ ] o.2=var 04"  ~ GjD,(Gj) (27) 
j = i  

Correctly, o .2 ---0 if the Gj a re  large enough. 
The above equations have the following meaning. 

From the population of the random variables 0j we 
select by a random method m independent collections 
of r elements with r sufficiently large. For the qth of 
these collections we observe the average values Rq 
and Oq and from them we calculate the average values: 

l f ,  1 m 
Ray ~ - - -  R q ,  0av = -  ~ Oq. (28) 

m m q=l  q=i  

Our results suggest that Ray and 0av are dispersed 
around 

1 r 
(Rh) = -  ~ G,D,(Gj) 

E I j = I  

and (0h) = q~n, respectively, according to normal distri- 
butions. If all G~s tend to zero then (Rh)--~ 0 and (04) 
is not defined. In this case the distribution of Rh is 
related to a X 2 distribution (Mardia, 1972). 

The following lemma helps us to calculate the 
asymptotic joint probability distribution function of 
Rh and 04. 

Lemma: Suppose that xi has mean ~¢i and that the 
variances and covariances of the m variates x~, xm, 
. . . ,  Xm are of order r -I. If g(x)=g(xl,  Xm,...,Xm), 
h(x) = h(x~, x2 , . . . ,  xm) are two ditterentiable func- 
tions of x., xm,. . . ,  xm, then 

m 
cov (g, h ) -  ~ gl(~)h'i(~)var x, 

i=1 

+ ~, gi(~)h~(~) cov (xi, xj). (29) 
i~ j=  1 

The joint probability distribution of g and h is 
asymptotically bivariate normal. 

In accordance with the above lemma we obtain 
(see Appendix) for the covariance of Rh and Oh: 

cov (Rh, 04) = 0. 

* The Appendix has been deposited with the British Library 
Lending Division as Supplementary Publication No. SUP 39167 
(2 pp.). Copies may be obtained through The Executive Secretary, 
International Union of Crystallography, 5 Abbey Square, Chester 
CHI 2HU, England. 
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Finally, the asymptotic joint probability distribu- 
tion of Rh and Oh is the product of two uncorrelated 
normal distributions. 

The asymptotic validity of the previous results 
should be stressed. Indeed, according to the normal 
distribution, the value of Rh may theoretically range 
from -0o to +oo, in spite of the algebraically strict 
limits 0<~ Rh<~ 1. However, if r is sufficiently large 
and Gj, j = 1 , . . . ,  r, do not vanish, the contribution 
to the integral ~+-~P(Rh)dRh from the intervals 
(-co, 0) and (1, +co) could be neglected. 

In its turn the theoretical distribution obtained for 
Oh is not a Von Mises distribution. 

5. The asymptotic distribution of  Ch in a 
centrosymmetric case 

Let us define 
1 r 

Ch=~llj~= 1 Gj COS Oj (30) 

and suppose that the variables 0j are distributed 
according to two-point distributions of type 
CW(0j; ~h, Gj), where 

(a) 0j may assume the values 0 or 7r so that cos 0j 
is the sign of the product EkjEh-k~; 

(b) ~h is the phase value_e_(0 or It) of Eh; 
(c) Gj --]EhEk, Eh-kj]/~/ N ; 
(d) CW is the Cochran & Woolfson (1955) probabil- 

ity density for cos Oj: 

Pj(cos 0j)"- 0"5 +0"5 tanh (Gj cos Oj cos ~0h). 

Ch is the sum of independent random variables. If r 
is sufficiently large the central limit theorem may be 
applied, according to which 

1 ()&~ Gj tanh Gj)cos  q~h, (31) 
j = l  

I 
o-b = var y_, C rl-tanh = 

L,I j= l  

Then 

P(Ch) 1 I" "1 | (Ch--(Ch))2| (32) 
O'c 2 ~  exp L 20 .2 3" 

6. The distributions of ah and Oh 

Let us denote by N[x; y, z] the normal distribution 
of the variable x, with expected value y and variance 
z. In accordance with § 4 the distribution of ah = F.l Rh 
is 

where 

P ( a h )  N[o~ h ; (0~h) , 2 = tr,~h], (33)  

(aeh)= ~ GjDI(Gj), (34) 
j=l  
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2 =½ ~ G2[1 +D2(Gj)_ED~(GS)]" (35) O'ah 
j= l  

For the centrosymmetric case ah = Y.l Ch, where Ch 
is given by (30). In accordance with § 5, P(ah) is again 
given by (33) with 

(O~h) = ( ~-"~ G~tanhGj) cosq~h, (36) 
j= l  

2 ~ (3211 tanh 2 Gj]. (37) O'~h ~ 
j=l  

In seeming contrast with (1) the distribution of 0h 
[see (26) and (27)] is a normal distribution, i.e. 
N[Oh; q~h, (ah)-l]. However, if (ah) is large enough 
(_>2), N[0h; ~ph,(ah) -l] may be approximated by 
M[Oh;~Ph,(ah)], which is really the expected 
asymptotic form of the distribution (1). 

7. Experimental 

Because of their asymptotic nature our results hold 
for r sufficiently large. What such an assumption 
means in our case is not easy to state. In general some 
statistics tend to normality more rapidly than others 
and a given r may be large for some purposes but 
not for others. For the usual applications of the 
tangent formula the value of r ranges from 1 to about 
50. Therefore our theoretical results, even if useful 
for practical purposes, cannot have strict validity. 

We have checked the correctness of the distribution 
P(a) via its first moments by generating p random 
samples of 0 values (Best & Fisher, 1979), each sample 
consisting of q events 0, distributed according to the 
Von Mises distribution M[O; O, G]. In Table 1 the 
theoretical values (ah) and tr~ h are compared with the 
experimental ones (in parentheses). A satisfactory 
agreement is found: for large values of p and q the 
small discrepancies are mainly due to the approxima- 
tions caused by the analytical estimation of the func- 
tion Dl; for small values of p and q the relatively 
larger discrepancies are mainly due to the sampling 
effects. There is experimental evidence that P(a) may 
usefully be applied to tangent procedures provided 
the 0fs are random samples from Von Mises popula- 
tions. 

From P(a) some related distributions may be 
calculated: 

(a) if y= a/Ca), then 

P(y) = N[y; 1, tr'], (38) 

where tr '= t r / (a) ;  
(b) if x =  a2/(a 2) then 

1 { [~x-m]21 ,  
P(x) - exp (39) 

2 ~ " ~  2~r "2 ] 

where O'"2= 0r2/(32),  m=(ol)/(ot2) 1/2. 



394 THE DISTRIBUTION OF ah 

Table 1. Theoretical and experimental (in parentheses) 
values of  (C~h) and tr~ h from p samples of q events 
distributed according to the Von Mises distribution 

M[O: O, G] 

q 50,5000 20,2000 10,10 5,5 
G 1"5 3 1"5 1.5 

(a) 4451 4864 9.69 4.45 
(4479) (4848) (10-0) (4.18) 
53"2 36"2 2"38 1"68 

(59-8) (36"0) (2-23) (1"61) 

Equation (39) is shown for some selected cases in 
Fig. 1. The distribution P(x) was invoked by Hull & 
Irwin in order to justify their weight 

w~, = ~ e -x2 i exp t 2 dt. (40) 
o 

In particular they supposed that (40) (the dotted line 
in Fig. 1) roughly corresponds to P(x). Our results 
show that: 

P(x) 

. . . . .  t" 
o 

0'5 

. . . . . . . . . . . .  

1'0 1'5 

F i g . l .  The distribution P(x) given by (43) is shown for selected 
values of  parameters m and 0.". Line 1: m = 0.95, 0." = 0-03. Line 
1 represents the distribution of x for a sample of  ten complex 
vectors 2 ei°J distributed according to M[Oj; 0, 2]. Line 2: m = 
0.84, o '"=0.13. Line 2 represents the distribution of x for a 
sample of ten complex vectors e% distributed according to 
M[Oj; O, 1]. Line 3: The distribution (6). 

(1) P(x) depends on the two parameters m and o-" 
while no parameter is in (40); 

(2) the distribution (40) does not agree with P(x). 
In particular the maximum of P(x) is usually not 
at 1. 

8. Conclusions 

The asymptotic distribution of the resultant of the 
complex vectors Gj exp (iOj), j = 1, . . . ,  r, where 0j = 
0kj + 0h-kj is distributed according to M[Oj; ¢h, Gj], 
is calculated. The statistical results suggest that the 
phase of the resultant is distributed around Ch 
approximately according to a Von Mises distribution 
with concentration parameter equal to (ah), while the 
modulus of the resultant is normally distributed 
around (ah) [given by (34) and (36) for non- 
centrosymmetric and centrosymmetric structures, 
respectively]. 

One of the authors (CG) would like to thank 
Professor G. Girone for helpful discussions. 
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Abstract 

Using a double crystal diffractometer with an addi- 
tional crystal between the two crystals used as X-ray- 
optical polarizer and analyzer the phase relation 
between mutually perpendicularly polarized wave 
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fields is examined in the Bragg case. The additional 
crystal is a (l l0)-surface oriented silicon crystal 
adjusted for the symmetric 220 Cu Ka~ Bragg case. 
In the case of coherent excitation of both o'- and 
rr-polarized wave fields in the silicon crystal it is 
experimentally shown that a unique phase relation 
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